Boundary modes of a charge density wave state in a topological material (2024)

  • Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article ADS Google Scholar

  • Yin, J. X., Pan, S. H. & Hasan, M. Z. Probing topological quantum matter with scanning tunneling microscopy. Nat. Rev. Phys. 3, 249–263 (2021).

    Article Google Scholar

  • Hasan, M. Z. et al. Weyl, Dirac and high-fold chiral fermions in topological quantum matter. Nat. Rev. Mater. 6, 784–803 (2021).

    Article ADS Google Scholar

  • Nenno, D. M. et al. Axion physics in condensed-matter systems. Nat. Rev. Phys. 2, 682–696 (2020).

    Article Google Scholar

  • Gooth, J. et al. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature 575, 315–319 (2019).

    Article ADS Google Scholar

  • Allen, M. et al. Visualization of an axion insulating state at the transition between 2 chiral quantum anomalous Hall states. Proc. Natl Acad. Sci. USA 116, 14511–14515 (2019).

    Article ADS Google Scholar

  • Li, R., Wang, J., Qi, X.-L. & Zhang, S.-C. Dynamical axion field in topological magnetic insulators. Nat. Phys. 6, 284–288 (2010).

    Article Google Scholar

  • Mogi, M. et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017).

    Article ADS Google Scholar

  • Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).

    Article ADS Google Scholar

  • Zhang, D. et al. Topological axion states in magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019).

    Article ADS Google Scholar

  • Li, X.-P. et al. Type-III Weyl semimetals: (TaSe4)2I. Phys. Rev. B 103, L081402 (2021).

    Article ADS Google Scholar

  • Fijalkowski, K. M. et al. Any axion insulator must be a bulk three-dimensional topological insulator. Phys. Rev. B 103, 235111 (2021).

    Article ADS Google Scholar

  • Chiu, W.-C. et al. Causal structure of interacting Weyl fermions in condensed matter systems. Nat. Commun. 14, 2228 (2023).

    Article ADS Google Scholar

  • Shi, W. et al. A charge-density-wave topological semimetal. Nat. Phys. 17, 381–387 (2021).

    Article Google Scholar

  • Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article ADS Google Scholar

  • Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    Article ADS Google Scholar

  • Malashevich, A., Souza, I., Coh, S. & Vanderbilt, D. Theory of orbital magnetoelectric response. N. J. Phys. 12, 053032 (2010).

    Article Google Scholar

  • Sinchenko, A. A., Ballou, R., Lorenzo, J. E., Grenet, T. H. & Monceau, P. Does (TaSe4)2I really harbor an axionic charge density wave? Appl. Phys. Lett. 120, 063102 (2022).

    Article ADS Google Scholar

  • Mitsuishi, N. et al. Switching of band inversion and topological surface states by charge density wave. Nat. Commun. 11, 2466 (2020).

    Article ADS Google Scholar

  • Yi, H. et al. Surface charge induced Dirac band splitting in a charge density wave material (TaSe4)2I. Phys. Rev. Res. 3, 013271 (2021).

    Article Google Scholar

  • Huang, Z. et al. Absence of in-gap modes in charge density wave edge dislocations of the Weyl semimetal (TaSe4)2I. Phys. Rev. B 104, 205138 (2021).

    Article ADS Google Scholar

  • Aketagawa, M. & Takada, K. Correction of distorted STM image by using a regular crystalline lattice and 2D FFT. Nanotechnology 6, 105 (1995).

    Article ADS Google Scholar

  • Lee, K. B., Davidov, D. & Heeger, A. J. X-ray-diffraction study of the CDW phase in (TaSe4)2I-determination of the CDW modulation amplitude. Solid State Commun. 54, 673–677 (1985).

    Article ADS Google Scholar

  • Requardt, H., Kalning, M., Burandt, B., Press, W. & Currat, R. Critical x-ray scattering at the Peierls transition in the quasi-one-dimensional system (TaSe4)2I. J. Phys. Condens. Matter 8, 2327 (1996).

    Article ADS Google Scholar

  • Smaalen, S., Lam, E. J. & Ludecke, J. Structure of the charge-density-wave in (TaSe4)2I. J. Phys. Condens. Matter 13, 9923 (2001).

    Article ADS Google Scholar

  • Fujish*ta, H., Sato, M. & Hoshino, S. Incommensurate superlattice reflections in quasi-one-dimensional conductors, (TaSe4)2I and (NbSe4)2I. Solid State Commun. 49, 313–316 (1984).

    Article ADS Google Scholar

  • Favre-Nicolin, V. et al. Structural evidence for Ta-tetramerization displacements in the charge density-wave compound (TaSe4)2I from x-ray anomalous diffraction. Phys. Rev. Lett. 87, 015502 (2001).

    Article ADS Google Scholar

  • Fujish*ta, H., Shapiro, S. M., Sato, M. & Hoshino, S. A neutron-scattering study of the quasi-one-dimensional conductor (TaSe4)2I. J. Phys. C: Solid State Phys. 19, 3049 (1986).

    Article ADS Google Scholar

  • Lorenzo, J. E. et al. A neutron scattering study of the quasi-one-dimensional conductor (TaSe4)2I. J. Phys. Condens. Matter 10, 5039–5068 (1998).

    Article ADS Google Scholar

  • Li, G. et al. Chirality locking charge density waves in a chiral crystal. Nat. Commun. 13, 2914 (2022).

    Article ADS Google Scholar

  • Stoltz, D. et al. Tunneling evidence for spatial location of the charge-density-wave induced band splitting in 1T-TaSe2. Phys. Rev. B 76, 073410 (2007).

    Article ADS Google Scholar

  • Mallet, P. et al. Contrast reversal of the charge density wave STM image in purple potassium molybdenum bronze K0.9Mo6O17. Phys. Rev. B 60, 2122 (1999).

    Article ADS Google Scholar

  • Tournier-Colletta, C. et al. Electronic instability in a zero-gap semiconductor: the charge density wave in (TaSe4)2I. Phys. Rev. Lett. 110, 236401 (2013).

    Article ADS Google Scholar

  • Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129 (1988).

    Article ADS Google Scholar

  • Flicker, F. & van Wezel, J. Charge order from orbital-dependent coupling evidenced by NbSe2. Nat. Commun. 6, 7034 (2015).

    Article ADS Google Scholar

  • Varma, C. M. & Simons, A. L. Strong-coupling theory of charge-density-wave transitions. Phys. Rev. Lett. 51, 138 (1983).

    Article ADS Google Scholar

  • Zhang, Y. et al. First-principles study of the low-temperature charge density wave phase in the quasi-one-dimensional Weyl chiral compound (TaSe4)2I. Phys. Rev. B 101, 174106 (2020).

    Article ADS Google Scholar

  • Wang, Z. et al. Electronic nature of chiral charge order in the kagome superconductor CsV3Sb5. Phys. Rev. B 104, 075148 (2021).

    Article ADS Google Scholar

  • Stühler, R. et al. Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator. Nat. Phys. 16, 47–51 (2020).

    Article Google Scholar

  • Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article ADS Google Scholar

  • Bernevig, B. A. & Zhang, S.-C. Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).

    Article ADS Google Scholar

  • Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article ADS Google Scholar

  • König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article ADS Google Scholar

  • Yin, J. X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020).

    Article ADS Google Scholar

  • Shumiya, N. et al. Evidence of a room-temperature quantum spin Hall edge state in a higher-order topological insulator. Nat. Mater. 21, 1111–1115 (2022).

    Article ADS Google Scholar

  • Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014).

    Article Google Scholar

  • Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. 13, 683–687 (2017).

    Article Google Scholar

  • Wu, R. et al. Evidence for topological edge states in a large energy gap near the step edges on the surface of ZrTe5. Phys. Rev. X 6, 021017 (2016).

    Google Scholar

  • Li, X.-B. et al. Experimental observation of topological edge states at the surface step edge of the topological insulator ZrTe5. Phys. Rev. Lett. 116, 176803 (2016).

    Article ADS Google Scholar

  • Wang, Z. et al. Topological edge states in a high-temperature superconductor FeSe/SrTiO3(001) film. Nat. Mater. 15, 968–973 (2016).

    Article ADS Google Scholar

  • Sessi, P. et al. Robust spin-polarized midgap states at step edges of topological crystalline insulators. Science 354, 1269–1273 (2016).

    Article ADS MathSciNet Google Scholar

  • Peng, L. et al. Observation of topological states residing at step edges of WTe2. Nat. Commun. 8, 659 (2017).

    Article ADS Google Scholar

  • Liu, S. et al. Experimental observation of conductive edge states in weak topological insulator candidate HfTe5. APL Mater. 6, 121111 (2018).

    Article ADS Google Scholar

  • Ugeda, M. M. et al. Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2. Nat. Commun. 9, 3401 (2018).

    Article ADS Google Scholar

  • Reis, F. et al. Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material. Science 357, 287–290 (2017).

    Article ADS MathSciNet Google Scholar

  • Zhang, X. et al. Eightfold fermionic excitation in a charge density wave compound. Phys. Rev. B 102, 035125 (2020).

    Article ADS Google Scholar

  • Wieder, B. J., Lin, K.-S. & Bradlyn, B. Axionic band topology in inversion-symmetric Weyl-charge-density waves. Phys. Rev. Res. 2, 042010(R) (2020).

    Article Google Scholar

  • Zhang, S.-B. et al. Emergent edge modes in shifted quasi-one-dimensional charge density waves. Phys. Rev. Lett. 130, 106203 (2023).

    Article ADS Google Scholar

  • Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).

    Article ADS Google Scholar

  • Boundary modes of a charge density wave state in a topological material (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Pres. Lawanda Wiegand

    Last Updated:

    Views: 6516

    Rating: 4 / 5 (51 voted)

    Reviews: 90% of readers found this page helpful

    Author information

    Name: Pres. Lawanda Wiegand

    Birthday: 1993-01-10

    Address: Suite 391 6963 Ullrich Shore, Bellefort, WI 01350-7893

    Phone: +6806610432415

    Job: Dynamic Manufacturing Assistant

    Hobby: amateur radio, Taekwondo, Wood carving, Parkour, Skateboarding, Running, Rafting

    Introduction: My name is Pres. Lawanda Wiegand, I am a inquisitive, helpful, glamorous, cheerful, open, clever, innocent person who loves writing and wants to share my knowledge and understanding with you.